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ABSTRACT: The properties of plasticoviscous media have been the
subject of numerous studies, in particular [1-5], This paper deals
with the problem of plasticoviscous flow in the absence of a pressure
drop of a medium with nonlinear viscosity in pure shear in a region
wedge-shaped in plan, and with the problem of flow under the in-
fluence of a pressure drop, when one face of the wedge moves paral-
lel to the edge,

1. We will consider the flow of an isotropic plasticoviscous me-
dium with nonlinear viscosity between two infinitely long rigid cyl-
inders (Fig.1). The cross section of the contour of one of the cylin-
ders Sy is wedge-shaped, the cross section of the second cylinder S,
takes the shape of a smooth closed curve asymptotically approaching
the contour §; at infinity, The two cylinders have parallel generators,
The first cylinder is fixed, the second moves at a constant velocity
u, parallel to the generators,

Let the z axis be directed along the generators of the cylinders
in the direction of motion of the second cylinder, We set up the x
and y axes in the plane of the cross section of the first cylinder. The
velocity u(x, y) of each particle of the medium is directed along the
Z axis,

The nonlinear relation between the shearing stress 7 and the shear
rate y is taken in the form

w=(—k  @>0), 1.1)
where k is the yield point, and 7, g the coefficient of viscosity and
the viscosity exponent, Retaining the previous notation, we go over
to dimensionless quantities, We refer the velocity u(x, y) to the quan-
tity uy, the stress 7 to the yield point k, and quantities with the di-
mension of length to the quantity k/y. The Eq. (1.1) may be rewritten
in the dimensionless form

y= (1 — 1. (1.2)

Following the ideas of [2], we go from the plane Xy to the orthog-
onal network of coordinates u and v formed by the lines of equal ve-
locity u = const and the lines of stresses v = const, to which the vector
r is tangential.

The equation for the function u(7, ¢) has the form

2y—1y Ou Pu , dy

v 0%
-+ — + 55 i = =0, Y=-g"- (1.3)
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The boundary conditions are

©=10 on 8y, u=1on;, u=0 atlr=1. 1.4)

The solution of Eq. (1.3) with boundary conditions (1. 4) will be found
in the form

u = T(1) cos Ap. (1. 5)

Substituting (1. 5) and (1.3) and satisfying the second of conditions
(1.4), we obtain

u (7, 9) = 4p (Tt — DV Dpcos kg, (1.6)

where A are the eigenvalues of the problem, and (2 ~ap, 2~
- By, 2+4p, 1 - 1) is a hypergeometric function,

=Yy (1 — ) + [t — ) + phaT,
Br=1/a (1 — ) — (4 — wi+uhat @mn

We denote by w the cone angle of the contour §,. If we set

2n 41
xﬂzi;—i—(—o)l, @.8)

then the solution (1. 6) will satisfy the first and second of boundary
conditions (1.4). Summing the particular solutions (1, 5), we cbtain
the general solution

m
u= 3 Ay (v—1)"* Oy coshnp . 1.9

n=]1

Fig. 1

We will use the third of conditions (1.4) as an equation for de~
termining the moving contour S,.
Evaluating the derivatives dz/dp, 8z/dv, 8y/@p and 8y/év, we find

m
r="z(t,) @)= 2 A, (K, cos @ cos Ay + Ln sin @ sin A,9),

y= y(-r ‘P)—Z A, (K sin @ cos Ap@ — Ly, o8 @ sin Ap@), (1, 10)
n=1
1 1
Ky= gt u o, *)—(ﬁ—r>®n+w+
L= [ Ky + (1 —1)Qy). (1.11)

Here Ay is an arbitrary constant, and ®p°(1 —ap, 1 - Bp, 1+1p,
1 ~ 1) is a hypergeometuric function, The equation for the contour
of the rigid core x4(¢), yi(#) is obtained from (1.10) by setting 7 =
=1 in those expressions

m
o (@) = 2 AnKy (1) (05 @ 005 Ay @ - hn 5in @ Sin A P)s

n=1

m
y1(@)= 3 AnKy (1) (sin @ cos hn® —Apcos@sinh,g).  (L.12)
n=1

The stress vector 7 is orthogonal to the contours Sy and Sy; therefore
on AB the angle ¢ =—(7— w)/2, If in (1,10) we set ¢ =—(7 — w)/2, we
obtain y = x tg w/2, i e., the equation of the line AB. Setting ¢ =
= (w=m/2 and v = 1 in (1.10), we find the position of the point A at
which the contour of the core and the line AB meet:

m m
[ )
r= 2 AnAnKy (1) cos 35, y=2 AnAnKn (1) sin - . (1.18)
Tl ‘n=1

At @ = 0 from (1,12) we find the coordinates of the points of inter-
section of the contour of the core and the x axis:

z= 2 An iy pEt (1. 14)

Obviously, at ¢ =—( —w)/2 from (1, 12) we find the same values
of the coordinates of the point A, To find the coordinates of the point
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A from both (1, 10) and (1. 12) it is necessary to take the same value
of the angle ¢; therefore the contour of the core and the contour Sy
meet smoothly at the point A, having a common tangent, This can
also be seen by calculating the slope of the tangent at the point A to
the line (1.12):

m
A 1
Apn=@2n+1), y,=0, xA=2 An—-’—;\‘%—l__—il (o — 0),
n==y :
An — 00, :cA=zA=0 (@~ 7).

As the angle w increases to a straight angle, the stagnant zone
diminishes to zero,

On the basis of (1, 9) and (1.10) it is easy to see that at infinity all
the lines u = const asymptotically approach the contour ;.

2. We will now consider the flow of a plasticoviscous medium in
2 wedge under the action of a pressure drop P(r, ¢) when one face is
fixed and the other moves at a constant velocity ug parallel to the
edge,

We will assume that the flow inside the wedge is described by the
function u = u(¢), The shearing stress-shear relation is written in the
form

T=k+ Fy). 2.1)
From the equilibrium equation

1 2 i
— =P @.2)

and from (2.1) we find that in the case in question

u” dF
P(r, Q)=

1 1
e Y= -r=k+F<‘;“'u'): (2.3)

i.e,, asthe apex of the wedge is approached the values of the shear
rate and shearing stress depend on the direction of approach,

We write the boundary conditions for the function u in the form

u=0 at =10, u=1u, at ¢ =@, (2.4)

At P(1, ¢) from (2.3) and (2, 4) we obrain

u = gujo (2.9)

i, e., particles of the medium on a ray drawn from the apex of the
wedge move at different velocities,
For the given P(x, ¢) from (2..3) and (2. 4) we find u = u(o),
We calculate the force T applied to the part of the wedge face
[0, 11
K

r
T=Srdr=kr-—u’gf..(2l)_d7. 2.6)
[} ¥ T

Since the force T is a finite quantity, integral (2.6) imposes a limita-
tion on the choice of F(y). Thus, at points where y is large, the re-
lation F(y) must be such that the force T is a finite quantity.

If we take F(y) = myM, then from (2. 6) it is easy to see that the
inequality m =1 must be satisfied, i.e., at points where y increases
without bound, the viscosity cannot be linear,

REFERENCES

1. J. G. Oldroud, "Rectilinear plastic flow of a Bingham solid,"
Proc,, Cambridge Philos. Soc., vol, 44, p. 2, 1948,

2. H, Neuber, "Theory of stress concentration in prismatic bars
working in shear for any nonlinear stress-strain law, " collection:
Mekhanika [Russian translation], no. 4, 1961.

3. V. A, Znamenskii and D. D, Ivlev, "Equations of a plastico~
viscous solid with pircewise-~linear potentials," I1zv. AN SSSR, no. §,
1963,

4, V, P, Myasnikov, "Some exact solutions for rectilinear motions
of a plasticoviscous medium,” PMTF, .no, 2, 1961,

5. A, Kh, Mirzadzhanzade, Some Problems of Plasticoviscous
Fluids in Relation to Petroleum Production [in Russian], 1zd. Azneft,
Baku, 1959,

27 March 1966 Voronezh



